Interactive Recommendation
Systems

Diploma thesis of Fotini Gkiouleka

Goals of thesis

o This thesis aims to build an interactive recommender system. Some initial recommendations
are returned to users, as they have been calculated by implementing a collaborative filtering
algorithm. Based on users’ feedback the recommendations are updated on real time and more
relevant recommended items are displayed to users.

e Inorder to adjust recommendations, an implementation of Rochio algorithm is suggested and
some common problems in the field of recommendation systems are tried to be solved like cold
start problem, user does not give feedback for recommended items etc.

e For the purposes of this thesis a demo books recommendation application has been developed
and some testing cases have been carried out in order to see how the recommendation system
reacts on different user’s actions. The code of demo application can be found on github
repository: https://github.com/fotein1/book recommender

https://github.com/fotein1/book_recommender

Importance of recommendation systems

During the last few decades, recommender systems have taken more and more place in our
lives. Some real-world examples include suggestions for products on Amazon, friends’
suggestions on social applications like Facebook, Twitter, LinkedIn and video recommendations
on Youtube, news recommendations on Google News and so on.

Recommender systems are really critical in some industries as they can generate a huge
amount of income.

Their intention is to facilitate users to find what they need effectively and immediately,
creating a delightful user experience while driving incremental revenue.

Goals of recommendation system

Relevance: A recommendation system should recommend items relevant to the user’s
preferences

Novelty: A recommender system are more helpful when recommended items have not been
seen by user in the past.

Serendipity: The recommended items are somewhat unexpected to user.

Increasing recommendation diversity: When the recommender system suggests items of
different types, there is a greater chance that the user might like at least one of these items.

Types of recommendation systems

Collaborative filtering models: These models are based on user-tems interactions such as
rating or buying behavior. The basic assumption in a collaborative filtering recommendation
system is that if two users shared the same interests as each other in the past they will also
have similar tastes in the future.

o User based collaborative filtering: Consider the preferences of similar users

o |tem based collaborative filtering: Consider the similarities of items.
Content based recommender systems: These models are based on content information of items

Knowledge based recommender systems: Users interactively specify their interests

Cortext-aware recommendation system: Take into account some other parameters like such as

day, season, mood, region etc.
Hybrid recommender systems: Combine different recommendation models

Collaborative filtering nearest neighborhood models

The standard method of Collaborative Filtering is
known as Nearest Neighborhood algorithm . similarities(t i) ~r,)

k
number of ratings

e User based CF: Find the most similar users on 0 o . .
. . wo ways to calculate similarity are Pearson Correlation and Cosine
the target user(nearest neighbors) and weight Similarity.

their ratings of an item as an prediction of the
rating of this item for the target user

Z(rij—r,.)(rkj—)
J

Pearson Correlation: Sim(u;,u,) =

e [tem based CF: We will make prediction for a
target user on an item by calculating weighted

V?(r,.j—ri)z %:(rkj—rk)2
?ﬁﬁ;rﬂggrof ratings on most X similar items from ot il Sl =
il|"k

e for the demo application we decided to
implement a collaborative item based filtering
recommendation systems. The reason was that

in our application the items(books) won't
be changed so often.

Relevance feedback Rochio algorithm

e The idea of relevance feedback (RF) is to involve the user in the retrieval process so as to
improve the final result set. The Rocchio Algorithm is the classic algorithm for implementing
relevance feedback. It models a way of incorporating relevance feedback information into the
vector space.

e The algorithm proposes using the modified query gm

where g0 is the original query vector, Drand Dnr are the set of known relevant and

nonrelevant documents respectively, and a, b, and ¢ are weights attached to each term

Books recommendations application

reate CUStO...

fotd Logout

I . / . t
ks list
gEt b 0 0 S I S s Title Author Publisher
. Lord of the Silent: A Novel of Suspense Elizabeth Peters Avon
get re c 0 m m e n d at I 0 n S Whisper to Me of Love Shirlee Busbee Harper Mass Market Paperbacks
rat e b 0 0 k Wouthering Heights EMILY BRONTE Bantam
The Stars Shine Down Sidney Sheldon Warner Books
.
V I e W 0 0 Robin Cook Berkley Publishing Group

This Present Darkness Frank E. Peretti Sagebrush Bound

The Mothman Prophecies John A. Keel Tor Books

Meet the Stars of Buffy the Vampire Slayer Stefanie Scott Scholastic

Rush to the Altar (Twin Brides) Rebecca Winters Harlequin

All-American Girl Meg Cabot HarperTrophy

Kz 3 45 100 Next »

My Recommendations

He Could Be Man at Work Stardust he The
solden the One (Avon (Avon Light . Wolves in Bonesetter's Potter and
Sompass Knife (His Light Contemporary the Walls Daughter the
His Dark Contemporary Romances) Galmen Chamber

— ol Neil Amy Tan el

Technologies

Django: Python based framework, used to build the required web services for application
(backend part of application)

Angular: Javascript based framework, used to build the user interface (frontend part of
application)

Redis: in-memory data structure store, used to cache data

Celery: An asynchronous task queue/job queue based on distributed message passing, used to
execute heavy tasks on background.

Python libraries: Pandas, a Python Data Analysis Library to read, analyse and convert csv files
to datasets. NumPy, a fundamental package for scientific computing with Python. was used in
many calculations. Scikit-learn package was used to implement some machine learning
algorithms.

Datasets

For the purposes of this thesis the Book Crossing dataset has been used. This dataset has been
compiled by Cai-Nicolas Ziegler in 2004, and it comprises of three tables for users, books and

ratings.

e BX-Book-Ratings.csv (1149780 items)
e BX-Books.csv (271360 items)
e BX-Users.csv (2/8858 items)

http://www2.informatik.uni-freiburg.de/~cziegler/BX/

Database structure

We have opted to work with sqlite database. We have
created the relevant django models to add the
following tables in database.

Book: db table to store books data

User_data: db table to store user data

Book_rating; db table to store books ratings of users
Book_view: db table to store books user has viewed
User_Book_prediction: db table to store the predicted
ratings for hooks user has not rated yet
Book_similarities: db table to store the similar books
for every book

ETL (Extract Transform Load) process

e After installing django framework, setting up django server and creating the above db tables
we filled the local database with the online datasets. This process is known as ETL.

e We extracted data from csv files using python pandas library, we calculated the users’
predictions and books’ similarities and we loaded the data the into database.

e To implement the ETL process we created the created the following django scripts, which can
be executed by command line:

load_users.py
load_books.py
load_ratings.py
load_books_smilarities.py
load_user_predictions.py

Calculate similarities of books

In order to find out the similar books, we used
the item based neighbourhood models, we
reduced the dataset size, taking into account
users who have rated at least 100 books and
books who have at least 100 ratings. Then we
generated a user-term matrix based on
rating table. Similarities need to be computed
between the columns of rating matrix,
implementing the adjusted cosine similarity
equation.

nmmn

Find similarities between items
@param obj self The pointer of class
@param intitem id The id of item
(@param arr ratings matrix The matrix of ratings
def findksimilaritems(self, item_id, ratings matrix):
similarities=[]
indices=[]
ratings = ratings_matrix.T
loc = ratings.index.get_loc(item _id)
model_knn = NearestNeighbors(metric = 'cosine', algorithm = 'brute')
model knn.fit(ratings)
distances, indices = model knn.kneighbors(ratings.iloc[loc, :].values.reshape(1, -1),
n_neighbors = selfk + 1)
similarities = 1-distances.flatten()
return similarities,indices

Predict users’ ratings for books not rated yet

e In order to predict the
user’s rating for a book,
we calculate the weighted
sum of user’s ratings for
the similar books.

def predict_itembased(self, user_id, item_id, ratings matrix):

prediction = wtd _sum =0
user_loc = ratings matrix.index.get loc(user_id)
item _loc = ratings._matrix.columns.get loc(item_id)
similarities, indices= self.findksimilaritems(item_id, ratings matrix)
sum_wt = np.sum(similarities) - 1
product = 1
for i in range(0, len(indices.flatten())):

if indices.flatten()[i] == item_loc:

continu

else:

product = ratings matrix.iloc[user loc, indices.flatten()[i]] * (similarities[i])

wtd_sum = wtd_sum + product

prediction = int(round(wtd sum/sum _wt))

Backend part of hooks recommendation application

We created the following RestFul web services:

register: POST /api/accounts

login: POST /api/sessions

logout: DELETE /api/sessions

Get hooks list: GET /api/books?page=1

Get books details: GET /api/books/{ISBN}

View book: POST /api/books-views

Rate book: POST /api/books-rates

Get recommendations: GET /api/books-recommendations/users/{user_id}

Frontend part of books recommendation application

e The frontend part of books recommendation application was built with angular framework. For
every view a separate angular module was created

REGISTER

TOXIN Details

Design of recommendations system - Get recommendations

A web service has been created to return the
recommendations to user. We store in redis
cache for every user a flag which expires
every hour and the recommendations for this
user. If the flag in cache has not expired yet,
the cached recommendations are returned to
user if exist. Otherwise, the user’s
recommendations are extracted again from
database

If user does not have any prediction stored
into database, a list with top rated books is
returned to him.

VIEWS.Py

class userBookRecommendationsAPIView(APIView):
def get(self, request, user_id, *args, **kwargs):
recommendations = []

recommendation expire cache name = 'recommendation expire '+ user id
reocmmendations_user_cache name = 'recommendations '+ user_id

recommendations = cache.get(reocmmendations_user_cache_name)
if recommendation_expire_cache name in cache and reocmmendations_user_ca{
recommendations:
recommendations = cache.get(reocmmendations_user _cache name)
else:
recommendations = []

recommendations = getUserPredictions(user. id, recommendations, False)

try:

find recommended_items.delay(user_id, recommendations)
except:

return HttpResponseNotFound("Recommendations not found")

return Response(recommendations)

if not recommendations:
recommendations = getUserPredictions(user. id, recommendations, True)

return Response(recommendations)

Design of recommendations system - User feedback

e When the cached flag for the logged in user expires after - -
an hour, the user’s predictions are extracted again from [E R e e
database while a task is triggered and added on celery
queue to adjust user’s recommendations.

e When user views a recommended book, it is considered The rochio weight is calculated with the following function in

0.15+(prediction, +.... + prediction,).
n

negative_prediction = intitial_prediction —

as positive feedback, otherwise a negative feedback recommendationLib.py:
o We find the similar books of recommended books viewed [

by user and we increase their prediction by the positive Calculate weight = rochio_weight*(sum_of predictions/prodicted_itemss
Welght Of ROChIO algorlthm @param arr recommendations An array with recommendations

e We find the similar books of recommended books not @pecam acrbodk views Anarsy with book views
viewed by user and we reduce their prediction by the
positive weight of Rochio algorithm

e We update the users’ predicted rating into database

e If user does not have any prediction stored into database
yet, we insert the adjusted predicted values into db.

e The adjusted recommendations are set in cache

def calculateWeight(rochio_weight, predicted_items_counter, predictions_sum):

return rochio_weight*predictions_sum/predicted_items_counter

Design of recommendation system - Workflow

books details

user visits the books details

Books views ws

POST /api/books-views

DB table:
books_views

User clicks a book
from recommedations Response
list

Insert book viewed by user in db

books list Recommendations
ws

user visits the books list o
1.Get user predictions from db or the
 EEE——
> . top rated books

GET /api/recommendations

|
——

User visits books list
Return the recommendated books

Return the recommendated books to user
if flag has not expired and there

T ncache
return the recommended books

-]

2.Trigger a background task and

stack it on celery queugyThis tasks
adjust the recommedatiolis based on
s views implementing therochio algorithm

e

Update the results in cache
50 the updated results will be returned to user the

next user vistis the books list D E—

tems

icks some recommended

isted user cl

Ex

itial recommendations

1st test case

Adjusted recommendations

In

[72]
=
[
=
o
[}
©
c
[}
=
£
o
O
[
—
Y—
(]
4
=
©
o

Rank of recommended items

1J0 43Iyl Y
- pue JessQ
70 awne||ing
'Y ‘PHOM dYL
"“Asueyg ayl
"IN 1B 3IpIIM
"SNO|epUBIS
00yos ay |
UojaULIBIBM
'YL :aleq A
6 EpNoe.Ieg
0 s1a99\ Aog
“asipeled N
~ag Buides|s
~jo aons AW
sybisung
0] S$)00Q V
"B9Y O} MOH
"0S 15078yl
'Mopeys 3yl
sjebuy
iysi4 Buipuy
“"pUB BLIOIOIA
'} pue ejodIN
~Bneq :jgel
0} pabebuz
o yleaqayL
eluozewy
‘snoabeinno
"p ysipes ay L
'Sieyl puy
IH I19UVIN
"B|\ SUBYS S|
“eads ejues
“asuely [96IN
oueuld ay|
e||eg eiel)

BMO| U] UueadQ
€52

'se|liws SSIN
SpJedlsod

uny swoH
esnpap
“oH sadieys
d391L MONS
~yuelol] ayy
aysy sejebuy
“IH I1q4VIN
B\ SUBYS S|
e9| ‘Buiuea]

ueulq ayl

0} Auoepny
e||eJ eie|g

}onQ juno)

1st test case: Existed user clicks some recommended items

" books are ranked Higher on the st such o5 e [AGM IR AR
“Clara Calla”, “The Financial post selects the 100 [!
best companies to work for in Canada”, “The [ig
Financial post selects the 100 best companies to
work for in Canada”, “Santa Speaks: The Wit and
Wisdom of Santas Across the Nation” etc..

e The previous recommended books which have not
been clicked by the user, have been replaced by
new recommendations as a negative wight has been
added on their initial prediction value. Some new
books are appeared on recommendations list like
Outrageous fortune, Amazon

30

Love Isn't
Angelas A
SNOW TI
Medusa
The Picni
The Calle
Guilty Cre
The Crash...
The radis
Finding Fi
The Shad

g =
3(0
6 <

(]
So
<z

=1
=
@
w

Adjusted recommendations

isted user clicks all the recommended

Ex

ial recommendations

P n?mt
Rank of recommended items

2nd test case

of recommended items

'SJ8)InD ayL
K14 yBiH 3y L
eag ayl u|
0 snsseuled
'S SEM 1eUM
s
Buiyiswos
GesA) A0
NOdN 30NO
“OVIYYVIN V
~un elPpioY
moayiy|
~ay} bupjlem
“"OM Jeq e u|
~1addog sy
“"alpunyH ayL
100Y3s p|O
“"OUBPIAT BY L

a|el SJauIM
9wl SAJPML
010 Jayiead
“a|nday ayL
~-oelg buikes
1B 108)18d
“10 pue xAIQ
“"AON V :9IS0Y
'S Ja)InD dYL
YbIH 8yl
ineag syl u|
"0 Snsseuled
'S SEM 1BUM
ag JBAIY 3y L
“"aIn}eN ayL
"IHOI3M 3YL
~$$97103[q0
Y1 o} BupyieL
‘pe1s,qooer
Q) aeL Aliey
Anuyy
“nIL duQ ayL

~Benp) IA0T
"NOdN JONO
“OVIYYVIN V
“"un eljapion
no ayiuj
3y} bunjiem
"OM JJeq e U
-1jeddo) ayL
“"9IpunH 8yl
100Yos p|0
“OuBpIAg BYL

2nd test case: Existed user clicks all the recommended items

Rank of recommendations (Purple before Rochio - Pink after

The recommended items are quite similar with the [RASSESEE
original, but some new recommended items are ™

appeared on the end of the list. These hooks are =
similar with some books clicked by user. As it is 20

obvious from the following diagram, only the last
recommended books are different like “Perfect
Match: A Novel”, “The Crimson Petal and the White”
, 'Mlice's Tulips”, “The Corrections: A Novel”,
“Middlesex: A Nove”, “Forever: A Novel”

10

tem

ick any recommended

isted user does not cl

Ex

ial recommendations

3rd case

10NS

justed recommendat

=]
T

w
=
[
=
=i
L]
=}
{ =
()
£
£
o
O
[
L
“—
S
a4
o=
©
o

init

Rank of recommended items

~jeyl Jamod

sueipieng

ay1 joisal

Uyt Jo swi

O]loY s;3971

ay1 Jo 1lepm

1 A4S ybIN

Jo suobeiq
“'eg |no4 pioT
“'ay1 o||ay10
'O ONIATOH
Jep yues|||
“uine|y syl

o] om] 8yl
T'SMO||194 3y L

SBI\ 01 MOH
|qig dlueles

U} JO J191seiN
S¥ uayualyey
~ue |Ajer 1a
Uy 1pQ JuiIH
a9yl ul oIsNA
") sweyuing
D sweyuing
“ploT uowaq
~ed peuebjag
"0 Jo usand
o sueibep
“1eyl Jamod

3rd case: Existed user does not click any recommended item

® Aﬂer some time, new items are Rank of recommendations (blue before Rochio - green after
recommended to user while the order focne
of existed recommended books has o

30

been also changed. Some books like
“Satanic Bible” are still appeared on
list, while recommendations list has
been enriched with new suggestions
like the “Fellowship of the ring”

20

10

Night Sky.
Dune (Du
Star Wars

New user clicks some recommended items

4rth test case

Adjusted recommendations

Initial recommendations

£
o)
£
°
@
©
C
o
£
£
<)
o
)
o
"
S
4
c
I
o

Rank of recommended items

sjled oisseinp

%00GaJON 3y L.

~on7 Aor ay L

S Jswwng

“'BeS JO 8snoH

19A34 diin.
T'S8YOUM By L
sbogq anbe|d
“"puUB 8A0T JO
Id o3y
“19Yo1e) ay L

uowiwing ay |
B L ON3yL
El

snwiuy plim
191088 8y |

Arth test case: New user clicks some recommended items

o New registered user gets a list with top Eggﬁigf recommendations (green before Rochio - yellow after
rated recommended books. After o w0
clicking some recommended books, the .
recommendations are adjusted, The
order of results has been changed, while
new recommended books are appeared
on list which are considered similar with

the books user has clicked.

Summer.

6 o
E o
;w
EO
£ T

Conclusion

e the books recommendation system built for this thesis’s purpose is quite effective. From
performance aspect, the implementation is not so demanded, as the original recommendations
and the similarity between items can be calculated offline and then we just need to adjust
them based on user’s feedback, implementing the Rochio algorithm.

e Some common problems like cold start and users not clicking any recommended item can be
solved easily

e The algorithm to adjust user’s recommended items does not require complicated calculations
and user can get the updated recommended items immediately

Future improvements

o Different approaches could be tried on the first part where the initial recommendations are
calculated for the user. Maybe a deep learning model could result in more precise initial
recommendations

e The recommendations system could become more scalable if an unified analytics engine for
large-scale data processing like Apache spark or Handoop was used to calculate the initial
recommendations

e As far as the second part of recommendations’ adjustment based on users’ feedback is
concerned, more user’s actions could be taken into account to adjust the recommendations like
user’s latest ratings, reviews etc.

Thank you

