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Introduction Objectives

Objectives

The objectives of this thesis are as follows:

To survey recent successful parallel implementations of the VNS metaheuristic regarding
several variants of vehicle routing problems.

To present three parallelization strategies using the General VNS variant to tackle the
CVRP, in which we examine different approaches of exchanging solutions among parallel
executions.

To experimentally evaluate how the level of cooperation can affect the performance
between non-cooperative and cooperative models.

To improve the quality of the solutions by creating a new parallel model that filters
communication based on the tests performed.
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Introduction Capacitated Vehicle Routing Problem (CVRP)

Capacitated Vehicle Routing Problem (CVRP)

CVRP was introduced in:

Dantzig, G. B. and J. H. Ramser (1959).
The truck dispatching problem.

Management Science 6(1),80–91.
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Solution methodology Clarke and Wright construction heuristic (1/2)

Clarke and Wright construction heuristic (1/2)

Clarke and Wright heuristic was introduced in:

Clarke, G. and J. W. Wright (1964). Scheduling of
vehicles from a central depot to a number of delivery

points. Operations Research 12 (4), 568–581.

The algorithm starts with one route for every customer.
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Solution methodology Clarke and Wright construction heuristic (2/2)

Clarke and Wright construction heuristic (2/2)

In every iteration the number of vehicles is
reduced unifying two routes that give max
savings.
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Solution methodology Variable Neighborhood Search (VNS)

Variable Neighborhood Search (VNS)

Figure: Systematic neighborhood changes.

VNS is a metaheuristic, or framework for building heuristics,
proposed in:
Mladenović, N., Hansen, P.: Variable neighborhood search.
Computers & Operations Research24(11), 1097–1100 (1997)

Fact 1 A local minimum w.r.t. one neighborhood
structure is not necessary so with another;

Fact 2 A global minimum is a local minimum w.r.t. all
possible neighborhood structures.
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Solution methodology General Variable Neighborhood Search (GVNS)

General Variable Neighborhood Search (GVNS)

When the change of neighborhoods is performed in a deterministic way (Variable Neighborhood Descent)
then a more generic VNS emerges, called General Variable Neighborhood Descent (GVNS).
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Solution methodology Neighborhood structures

Neighborhood structures

Three operators were used:

2-opt (Intra-route), Swap (Inter-route), Relocate (Inter-route)
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Parallel GVNS scheme Computing environment

Computing environment

We ran the experiments on a computer with the following characteristics:

Windows 10 64bit
Intel Core i9 CPU 7940X at 3.50 GHz with 20 MB Cache
32GB DDR4 at 3333MHz

The parallel implementation was done using:

Python 3.7 with the multiprocessing library
Cython for the compilation.
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Computational experiments Benchmark instances

Benchmark instances

Tests were carried out using the CVRP benchmark instance library (CVRPLib) that can be
found at: http://vrp.galgos.inf.puc-rio.br/index.php/en/

The sets A,B,E ,M,Golden and X were used.

All instances from the sets A,B,E and M have optimum values.

Many instances from the Golden and the X set do not have an optimum value.
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Computational experiments Stopping criteria

Stopping criteria

Our models are executed until one of the stopping criteria is met. The stopping criteria for
this experiment are the following:

the maximum execution time; set to 3600 seconds.

the maximum number of GVNS iterations; set to 300.

when the optimal value is reached, if it exist.
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Computational experiments Parallel strategies

Parallel strategies

We propose three different strategies to parallelize GVNS:

The first one parallelizes the whole GVNS method while keeping every thread completely
isolated.

The second one parallelizes the whole GVNS, but all threads communicate the best
solution through manager proxy, maintaining a dense communication.

The third one parallelizes the whole GVNS. Communication is sparse and handled through
a manager proxy. Solution exchange is based on a self-adaptive criterion called θ.
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Computational experiments Parallel strategies, Non-cooperative model

Parallel strategies, Non-cooperative model

Island-based design; every thread runs the GVNS
algorithm isolated.

Threads are autonomous and utilize identical search
procedures.

When a stopping criteria is met the best solution is
picked.
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Computational experiments Parallel strategies, Managed Cooperative Model (MCM)

Parallel strategies, Managed Cooperative Model (MCM)

Initial solution is given using Clarke and
Wright.

One of the threads is used as a solution
warehouse (Server Manager).

Threads communicate with the Server
Manager.

No broadcasting takes place.

Panagiotis Kalatzantonakis (UoM) Parallel VNS for CVRP Thessaloniki, 2019 16 / 27



Computational experiments Parallel strategies - MCM communication strategy

Parallel strategies - MCM communication strategy

MCM communication strategy

Upon solution improvement then and only then a
threads communicates with the Server Manager.

Communication between the threads and the server
manager is very dense at the start (intensification).
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Computational experiments GVNS algorithm - MCM

GVNS algorithm - MCM

Algorithm 1 GVNS, Managed Cooperative Model (MCM)

function GVNS(fr , kmax , timelimit, manager)
while true do

t ← CpuTime()
fr ′ ← Shake(fr , kmax)
fr ′′ ← VND(fr ′, t, timelimit)
if thread solution <thread current best then

thread current best ← thread solution
if thread current best <manager global ▷ Communicate with warehouse
then manager global ← thread current best
else thread current best, thread solution ← manager global

if t >timelimit then break
if manager global == optimum then break ▷ if optimum value exists

end while
end function
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Computational experiments Parallel strategies - Parameterized Cooperation Model (PCM)

Parallel strategies - Parameterized Cooperation Model (PCM)

Figure: Thread-1 changes its solution.

Thread-2 continues to work with the same solution.

Bridging the gap

Same communication strategy as MCM.

A self-adaptive parameter (θ) is used.

Solutions are compared using Levenshtein.

Solution exchange is filtered using distance
and θ.
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Computational experiments PCM - Levenshtein distance

PCM - Levenshtein distance

The distance between two solution is calculated using the Damerau - Levenshtein distance:
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Computational experiments PCM - Criterion calculation

PCM - Criterion calculation

θ criterion

θ is based on the remaining time and GVNS iterations as depicted in Algorithm 2:

Algorithm 2 Parameter self-adaptation

θ ← 1
if (niter i > 0.2 × nitermax) ∨ (currenttime > 0.2 × timemax)

then θ = min ((1 − niter
nitermax

), (1 − time
timemax

))
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Computational experiments GVNS algorithm

GVNS algorithm

Algorithm 3 GVNS, Parameterized Cooperative Model (PCM)

function GVNS(fr , kmax , timelimit, manager)
while true do

t ← CpuTime();
fr ′ ← Shake(fr , kmax);
fr ′′ ← VND(fr ′, t, timelimit);
θ ← dynamic decrease(time, iter count);
if thread solution <thread current best then

thread current best ← thread solution
if thread current best ≤ manager global then ▷ Communicate with manager

manager global ← thread current best
else

if θ <distance(manager global , thread current best) then
thread current best, thread solution←manager global ▷ solution exchange

if (t >timelimit) or (manager global = optimum) then break
end while

end function
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Computational experiments Statistical analysis

Statistical analysis

Kolmogorov-Smirnov test was used.

The distribution deviates
significantly from the normal
distribution.

non-parametric tests were used
(Wilcoxon, Friedman, Kruskal).
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Computational experiments Experimental results

Experimental results

In the results shown in the table 1 we can observe essential differences among the compared methods.

Table: Comparison of the three GVNS parallel variants at 300 GVNS iterations

NCM MCM PCM

average error 0.837% 1.260% 0.729%
average CPU time (secs) 76.880 92.100 88.640

Optimal number of solutions 21 16 21
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Computational experiments Findings

Findings

Our results show that:

The full cooperative model (MCM) produced almost the same quality of solutions as the
non-cooperative model when solving easier instances.

Filtered cooperation (PCM) and the MCM produced superior quality solutions regarding the more
computationally difficult test instances.

Filtered cooperation (PCM) produced superior quality solutions in all instances.

Although, the non-cooperative model (NCM) has a more intense diversification phase, the sparse
communication between processes achieved by the communication coordination in the
Parameterized Cooperative Model is producing better solution quality by maintaining a balanced
level of interaction between the threads.
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Conclusions Conclusions

Conclusions

We used several known instances in order to compare and analyze the co-operation
strategies.

We have proposed three parallel GVNS versions based on python multiprocessing library
for solving the CVRP.

The communication strategy used by the PCM is a novel approach that, reduces the
communication overhead and producing better solution quality.

There seems to be a strong indication that, the cooperation strategy can have a decisive
influence on the quality of the solutions.
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Conclusions End of presentation

End of presentation

Thank you for your attention!
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