
Interactive Recommendation
Systems

Diploma thesis of Fotini Gkiouleka

Goals of thesis
● This thesis aims to build an interactive recommender system. Some initial recommendations

are returned to users, as they have been calculated by implementing a collaborative filtering
algorithm. Based on users’ feedback the recommendations are updated on real time and more
relevant recommended items are displayed to users.

● In order to adjust recommendations, an implementation of Rochio algorithm is suggested and
some common problems in the field of recommendation systems are tried to be solved like cold
start problem, user does not give feedback for recommended items etc.

● For the purposes of this thesis a demo books recommendation application has been developed
and some testing cases have been carried out in order to see how the recommendation system
reacts on different user’s actions. The code of demo application can be found on github
repository: https://github.com/fotein1/book_recommender

https://github.com/fotein1/book_recommender

Importance of recommendation systems
● During the last few decades, recommender systems have taken more and more place in our

lives. Some real-world examples include suggestions for products on Amazon, friends’
suggestions on social applications like Facebook, Twitter, LinkedIn and video recommendations
on Youtube, news recommendations on Google News and so on.

● Recommender systems are really critical in some industries as they can generate a huge
amount of income.

● Their intention is to facilitate users to find what they need effectively and immediately,
creating a delightful user experience while driving incremental revenue.

Goals of recommendation system
● Relevance: A recommendation system should recommend items relevant to the user’s

preferences
● Novelty: A recommender system are more helpful when recommended items have not been

seen by user in the past.
● Serendipity: The recommended items are somewhat unexpected to user.
● Increasing recommendation diversity: When the recommender system suggests items of

different types, there is a greater chance that the user might like at least one of these items.

Types of recommendation systems
● Collaborative filtering models: These models are based on user-tems interactions such as

rating or buying behavior. The basic assumption in a collaborative filtering recommendation
system is that if two users shared the same interests as each other in the past they will also
have similar tastes in the future.
○ User based collaborative filtering: Consider the preferences of similar users
○ Item based collaborative filtering: Consider the similarities of items.

● Content based recommender systems: These models are based on content information of items
● Knowledge based recommender systems: Users interactively specify their interests
● Cortext-aware recommendation system: Take into account some other parameters like such as

day, season, mood, region etc.
● Hybrid recommender systems: Combine different recommendation models

Collaborative filtering nearest neighborhood models
The standard method of Collaborative Filtering is
known as Nearest Neighborhood algorithm

● User based CF: Find the most similar users on
the target user(nearest neighbors) and weight
their ratings of an item as an prediction of the
rating of this item for the target user

● Item based CF: We will make prediction for a
target user on an item by calculating weighted
average of ratings on most X similar items from
this user

● For the demo application we decided to
implement a collaborative item based filtering
recommendation systems. The reason was that
in our application the items(books) won't
be changed so often.

Relevance feedback Rochio algorithm
● The idea of relevance feedback (RF) is to involve the user in the retrieval process so as to

improve the final result set. The Rocchio Algorithm is the classic algorithm for implementing
relevance feedback. It models a way of incorporating relevance feedback information into the
vector space.

● The algorithm proposes using the modified query qm

where q0 is the original query vector, Dr and Dnr are the set of known relevant and
nonrelevant documents respectively, and a, b, and c are weights attached to each term

Books recommendations application
● login/register user
● get books lists
● get recommendations
● rate book
● view book

Technologies
● Django: Python based framework, used to build the required web services for application

(backend part of application)
● Angular: Javascript based framework, used to build the user interface (frontend part of

application)
● Redis: in-memory data structure store, used to cache data
● Celery: An asynchronous task queue/job queue based on distributed message passing, used to

execute heavy tasks on background.
● Python libraries: Pandas, a Python Data Analysis Library to read, analyse and convert csv files

to datasets. NumPy, a fundamental package for scientific computing with Python. was used in
many calculations. Scikit-learn package was used to implement some machine learning
algorithms.

Datasets
For the purposes of this thesis the Book Crossing dataset has been used. This dataset has been
compiled by Cai-Nicolas Ziegler in 2004, and it comprises of three tables for users, books and
ratings.

● BX-Book-Ratings.csv (1149780 items)
● BX-Books.csv (271360 items)
● BX-Users.csv (278858 items)

http://www2.informatik.uni-freiburg.de/~cziegler/BX/

Database structure
● We have opted to work with sqlite database. We have

created the relevant django models to add the
following tables in database.
Book: db table to store books data
User_data: db table to store user data
Book_rating; db table to store books ratings of users
Book_view: db table to store books user has viewed
User_Book_prediction: db table to store the predicted
ratings for books user has not rated yet
Book_similarities: db table to store the similar books
for every book

ETL (Extract Transform Load) process
● After installing django framework, setting up django server and creating the above db tables

we filled the local database with the online datasets. This process is known as ETL.
● We extracted data from csv files using python pandas library, we calculated the users’

predictions and books’ similarities and we loaded the data the into database.
● To implement the ETL process we created the created the following django scripts, which can

be executed by command line:
 load_users.py
 load_books.py
 load_ratings.py
 load_books_smilarities.py
 load_user_predictions.py

Calculate similarities of books

● In order to find out the similar books, we used
the item based neighbourhood models, we
reduced the dataset size, taking into account
users who have rated at least 100 books and
books who have at least 100 ratings. Then we
generated a user-term matrix based on
rating table. Similarities need to be computed
between the columns of rating matrix,
implementing the adjusted cosine similarity
equation.

Predict users’ ratings for books not rated yet

● In order to predict the
user’s rating for a book,
we calculate the weighted
sum of user’s ratings for
the similar books.

Backend part of books recommendation application
We created the following RestFul web services:

● register: POST /api/accounts
● login: POST /api/sessions
● logout: DELETE /api/sessions
● Get books list: GET /api/books?page=1
● Get books details: GET /api/books/{ISBN}
● View book: POST /api/books-views
● Rate book: POST /api/books-rates
● Get recommendations: GET /api/books-recommendations/users/{user_id}

Frontend part of books recommendation application
● The frontend part of books recommendation application was built with angular framework. For

every view a separate angular module was created

Design of recommendations system - Get recommendations

● A web service has been created to return the
recommendations to user. We store in redis
cache for every user a flag which expires
every hour and the recommendations for this
user. If the flag in cache has not expired yet,
the cached recommendations are returned to
user if exist. Otherwise, the user’s
recommendations are extracted again from
database

● If user does not have any prediction stored
into database, a list with top rated books is
returned to him.

Design of recommendations system - User feedback
● When the cached flag for the logged in user expires after

an hour, the user’s predictions are extracted again from
database while a task is triggered and added on celery
queue to adjust user’s recommendations.

● When user views a recommended book, it is considered
as positive feedback, otherwise a negative feedback

● We find the similar books of recommended books viewed
by user and we increase their prediction by the positive
weight of Rochio algorithm

● We find the similar books of recommended books not
viewed by user and we reduce their prediction by the
positive weight of Rochio algorithm

● We update the users’ predicted rating into database
● If user does not have any prediction stored into database

yet, we insert the adjusted predicted values into db.
● The adjusted recommendations are set in cache

Design of recommendation system - Workflow

1st test case: Existed user clicks some recommended items
● Initial recommendations ● Adjusted recommendations

1st test case: Existed user clicks some recommended items
● The clicked recommended books and their similar

books are ranked higher on the list, such as the
“Clara Calla”, “The Financial post selects the 100
best companies to work for in Canada”, “The
Financial post selects the 100 best companies to
work for in Canada”, “Santa Speaks: The Wit and
Wisdom of Santas Across the Nation” etc..

● The previous recommended books which have not
been clicked by the user, have been replaced by
new recommendations as a negative wight has been
added on their initial prediction value. Some new
books are appeared on recommendations list like
Outrageous fortune, Amazon

2nd test case: Existed user clicks all the recommended
items
● Initial recommendations ● Adjusted recommendations

2nd test case: Existed user clicks all the recommended items

The recommended items are quite similar with the
original, but some new recommended items are
appeared on the end of the list. These books are
similar with some books clicked by user. As it is
obvious from the following diagram, only the last
recommended books are different like “Perfect
Match: A Novel”, “The Crimson Petal and the White”
, “Alice's Tulips”, “The Corrections: A Novel”,
“Middlesex: A Nove”, “Forever: A Novel”

3rd case: Existed user does not click any recommended item
● initial recommendations ● Adjusted recommendations

3rd case: Existed user does not click any recommended item

● After some time, new items are
recommended to user while the order
of existed recommended books has
been also changed. Some books like
“Satanic Bible” are still appeared on
list, while recommendations list has
been enriched with new suggestions
like the “Fellowship of the ring”

4rth test case: New user clicks some recommended items
● Initial recommendations ● Adjusted recommendations

4rth test case: New user clicks some recommended items

● New registered user gets a list with top
rated recommended books. After
clicking some recommended books, the
recommendations are adjusted, The
order of results has been changed, while
new recommended books are appeared
on list which are considered similar with
the books user has clicked.

Conclusion
● the books recommendation system built for this thesis’s purpose is quite effective. From

performance aspect, the implementation is not so demanded, as the original recommendations
and the similarity between items can be calculated offline and then we just need to adjust
them based on user’s feedback, implementing the Rochio algorithm.

● Some common problems like cold start and users not clicking any recommended item can be
solved easily

● The algorithm to adjust user’s recommended items does not require complicated calculations
and user can get the updated recommended items immediately

Future improvements
● Different approaches could be tried on the first part where the initial recommendations are

calculated for the user. Maybe a deep learning model could result in more precise initial
recommendations

● The recommendations system could become more scalable if an unified analytics engine for
large-scale data processing like Apache spark or Handoop was used to calculate the initial
recommendations

● As far as the second part of recommendations’ adjustment based on users’ feedback is
concerned, more user’s actions could be taken into account to adjust the recommendations like
user’s latest ratings, reviews etc.

Thank you

