
Implementation of
Network Telemetry
System With P4
Programming Language

CHRISTOS DEMERTZIS

Supervising Professor

Dr. Papadimitriou Panagiotis

Agenda

• Objectives

• Programmable Networks

• Software Defined Networking (SDN)

• OpenFlow (OF)

• P4

• P416 Architecture

• P416 Language

• In-band Network Telemetry

• Modes

• INT Headers

• Experiments Overview

• Experiment 1 – Queue Depth

• Experiment 2 – Congestion discovery & Load Balancing

• Results

• Conclusion

Objectives

• Implementation of a network telemetry system using P4 programming

language

• Present the new capabilities of emerging programmable networking

devices to encapsulate processing metadata information.

• What is P4?

• What is In-band Network Telemetry ?

• What benefits we will get from INT or simple why to use it?

Programmable Networks
• Software Defined Networking (SDN)

• OpenFlow (OF)

Software Defined Networking (SDN)
• SDN is a new approach to networking

• Virtualize the network

• 2 Simple concepts

• Decoupling the forwarding hardware from the control decisions

(the control plane from the data plane)

• Provides an open API for direct access to the data plane.

• Advantages

• Networks can spun up and down

dynamically

• Networks can be fine tuned for specific

application use cases

• Security policies can be installed on each

individual network.

• Simpler Management

• Less dependence on vendors and standards

• Cheaper equipment

OpenFlow (OF)
• Most popular Southbound API

• Defines the way the SDN controller interacts with the Data plane

• It is a protocol that extracts the control of a switch to a

centralized server

• Switches and controllers communicate to each other using the

OF protocol.

• Can emulate various kinds of boxes (firewall, router, switch, etc.)

OpenFlow Applications (examples)

• DoS Attack Detection

• Network Virtualization

• Server Load Balancing

• Dynamic Access Control

OpenFlow (OF)
• OF expects the switches to have a fixed behavior (not programmable switch)

• Behavior of these networking devices cannot be changed (fixed)

• Protocol too complex – supporting complicated parsers and pipelines

• Specification complexity – extra features (from 4 header types to >50 today)

• Limited interoperability between Vendors.

P4 Programming Protocol-Independent Packet Processors

• What is it?

it is a high-level language expressing how the packets are

being processed by the data plane of a programmable

component such as software or hardware switch, router,

network interface card or network appliance.

Available: http://arxiv.org/abs/1312.1719

• Main goals:

• Reconfigurability

• Protocol Independence

• Target Independence

• Benefits:

• New Features (add new protocols)

• Reduce Complexity

• Efficient use of resources

• Greater Visibility (INT)
“Think like a programmer rather than protocols”

P416 Architecture
P4 is a domain-specific language which describes how a PISA

architecture should process the packets (https//p4.org)

• P4 Target – a model of a specific hardware implementation

• P4 Architecture – an API to program a target

Key Elements:

• Code – P4 program (User Supplied)

• Architecture Model (Vendor Supplied)

• Compiler (Vendor Supplied)

• Target:

• Control Plane (User Supplied)

• Data Plane (Vendor Supplied)

P4 Concepts

• Pipeline:

• Parser (converts packet data into metadata – Parsed Representation)

• Match-Action Tables (Operate on metadata)

• Deparser (Converts metadata back to serialized packet)

• Metadata Bus (Carries the information within the pipeline)

P416 Architecture (V1 Model)

Source: https://github.com/p4lang/tutorials/blob/master/P4_tutorial.pdf

Implemented on top of Bmv2’s simple_switch target

https://github.com/p4lang/tutorials/blob/master/P4_tutorial.pdf

P416 Language
Language Elements:
• Parsers: Machine State, bitfield extraction

• Controls: Tables, Actions, control flow statements

• Expressions: Basic operations and operators

• Data Types: Bitstrings, headers, structures, arrays

• Architecture Description: Programmable blocks and

their interfaces

• Extern Libraries: Support for specialized

components

Source: https://github.com/nsg-ethz/p4-learning/blob/master/slides/02_p4_env.pdf

https://github.com/nsg-ethz/p4-learning/blob/master/slides/02_p4_env.pdf

In-band Network Telemetry (INT)

• What is it?

it is mechanism for collecting and reporting real time network state (INT metadata)

directly in the data plane (in-band). The control plane is used only for decision

making on what information the data plane will collect and for which flows.

Providing answers to the operators, for example:

1. which path did the packet take?

2. Which rules did the packet follows?

3. How long did it queue at each networking device?

4. Who did the packet share the queue with, who is aggressor flow?

By:

• Instrumenting metadata into the packet

• Without changing anything in the application layer.

Available: https://github.com/p4lang/p4-applications/blob/master/docs/INT_v2_1.pdf

Today’s network monitoring is :

• Expensive and Inefficient (Ping, SNMP, Traceroute, etc.,)

• Microburst can’t be captured (100s ns – 10s μs)

• No visibility equals No Control

What information we can add in the packet:

• Switch Id

• Ingress Information

• Ingress Port

• Ingress Timestamp

• Egress Information

• Egress Port

• Egress Timestamp

• Hop Latency

• Egress Port TX Link Utilization

• Queue Occupancy

• Buffer Occupancy

In-band Network Telemetry (INT) Modes

Key Terms:

– INT Source: the networking device that apply and inserts the INT Headers into the packets.

(A Flow Watchlist is configured to choose the flows to insert the INT headers in.)

– Int Sink: it is the networking device that pulls out the INT headers from the packets and

gather up the network path state which is included in the INT Headers. The INT Sink

networking devices are trusted for the extraction of the INT headers and for making INT

mechanism transparent to the upper layers. The INT Sink networking device, after extracting

the INT information from the packets, it sends it to the monitoring and reporting system.

– INT Transit: is the networking device which gathers the metadata from the data plane as

specified in the INT instructions. According to the INT Instruction, the information can be

exported straight from the data plane to the Telemetry reporting and monitoring system or

just update the network state data in the INT Header while the packet continues to move

over the network.

INT Modes:

• INT-XD Postcard (No Packet Modifications)

• INT-MD Classic INT (Packet Modifications)

• INT-MX

In-band Network Telemetry (INT) Modes / INT-XD, INT-MX
In the postcard mode as was specified in the previous telemetry report

specification, now called INT-XD, each networking device is exporting metadata

straight from the data plane and based on the INT instructions as configured on

their Flow WatchList* to the telemetry monitoring system without any

modification of the packets. The Monitor is getting the reports from all the INT

capable networking devices and the information contained in the metadata can

be the Switch ID, Port ID or latency for each hop.

• *Flow Watchlist: A data plane table that matches on packet headers and inserts or

applies INT instructions on each matched flow. A flow is a set of packets having the same

values on the selected header field.

In the INT-MX, the INT Source networking devices embed INT instructions in the

packet headers and then each of the following either INT Source or INT Transit

networking devices directly sends the metadata to the monitoring system,

being complied with the INT instructions embedded in the packets. The INT Sink

networking devices at the end are stripping the instruction header before it

forwards the packets to the end host.

The packet size stays the same while the packet travels through the networking

devices.

In-band Network Telemetry (INT) Modes / In-band (In-situ) Mode

INT-MD mode is the classic hop-by-hop INT where:

• INT Source networking device embeds INT instructions.

• INT Source and Transit networking device embed INT metadata, and

• INT Sink networking device strips the instructions and the total metadata out of

the packet and send the data to the telemetry monitoring system.

The packet size is increased and modified in this mode whereas it reduces the

overhead at the telemetry monitoring system to collect reports from multiple

networking devices.

When the packet enters in the INT Source networking device (Switch A), the

INT instructions are embedded to the packet and in each hop the INT transit

networking devices are adding the INT metadata to the packet. In the end, the

INT Sink networking device will extract the INT metadata from the packet

before sending the packet to the final destination and according to the "Event

Detection" it will generate the telemetry report which it will contain all the

telemetry information from all the INT networking devices.

Event Detector (monitor every packet but repot only what matters)

- Generate reports upon

o Flow initiation & termination

o Path or latency changes

o Special field values

- Change detectors are reset periodically (e.g., once every sec)

In-band Network Telemetry (INT) / Headers
Three types of INT Headers exist: MD-type, MX-type and Destination-type.:

– MD-type: This type of INT Header must be processed by intermediate devices

– Destination-type: This type of header is consumed by the INT Sink networking device

while the intermediate (INT Transit) networking devices ignore such type.

- MX-type: The processing of this type of INT Header must be done by the intermediate

networking devices (INT Transit) and generate reports to the monitoring

system as directed.

The INT header has a length of 12 bytes followed by an INT metadata stack.

Each metadata length is either 4 bytes or 8 bytes long. The same metadata

length is applied to each INT hop so the total length of the metadata stack

varies as different packets can pass through various paths and consequently,

different INT hops.

The INT Source networking device must :
set the Ver, D, M, Hop ML, Remaining Hop Count, and Instruction Bitmap.
set all reserved bits to zero, and
set the Domain specific fields

The intermediated transit networking devices can set the following fields:
E, M, Remaining Hop Count, Domain specific fields

Experiments - Overview

Implement P4 In-band Network Telemetry which allows us to read queueing information,

like the number of the packets waiting to be transmitted , the queue occupancy and use

this information to identify congestion and move the flows that suffer from congestion to

another path.

To avoid the congestion, we will use a simple technique where every time the egress

switch (in our case this will be the switch before the destination host) will detect a packet

which suffers from congestion, it will notify the ingress switch with a notification

message and upon the receiving it will move the flow to another path which it will

be selected randomly.

• Virtual Machine (4096MB, CPU:3, OS: Ubuntu 16.04 LTS)

• Mininet

• Wireshark

• nload

• Iperf3

Experiments - Experiment 1 (Queue Occupancy)

• Objective: Read Queue Information

• Set the telemetry header when the packet enters the network with a specified destination port (7777) and keep the

telemetry header until the destination to show how the queue depth changes when we make flows to collide.

• Linear topology with 3 switches connected in series and 2 hosts connected to each extreme.

• Bandwidth: 10 Mbps/sec

Switches are adding the telemetry header to all the TCP packets with destination port 7777.
This telemetry header will carry the worst queue depth found across the path.

Experiments - Experiment 2 (Collision Detection & Load Balancing)

• Objective: Use the telemetry header to detect congestion and change the flow.

• The switches will make use of the telemetry header from the esoteric network to detect the congestion and

move the flows, load balance the network and then before the packets will be forwarded to the hosts, we will

have to remove the telemetry header (INT Sink= S6).

• Specify which type of nodes (host or switch) is connected to each of the switch’s port

• Define a match+action table in the ingress pipeline, identify output port for each packet

• Modify the egress, add logic :

• When the TCP packets are entering the network, the switches will add the telemetry header and

extract the telemetry header before arriving to the host

• Apply the logic to detect congestions and when detected, send notification to the ingress:

• Clone the packets that are triggering congestion

• Modify the cloned packets and send back:

• Check the queue depth if it is above the specified threshold (20 packets)

• If yes, trigger the feedback message.

• Add timeout per packet flow to avoid burst of packets

• Add probability to avoid overflow of the new flow

• Clone the packet – recirculate it.

• Modify the Ether.type in the parser so the switches to identify the feedback msg.

• Load Balancing: Ingress switches move the congested flows to new paths:

• Notification packets which should be dropped (meaning the switch is sending the

packets to the host) we save in a register identifier an ID value for each flow.

Upon a congestion notification for a given flow, we update the register value with a

new id (using a random number)

• Linear topology with 6 switches and 8 hosts

• Bandwidth: 10 Mbps/sec

Experiments - Experiment 2 (Collision Detection & Load Balancing)
• The switches will make use of the telemetry header from the esoteric network to detect the congestion and move the

flows, load balance the network and then before the packets will be forwarded to the hosts, we will have to remove

the telemetry header (INT Sink= S6).

Results
• Experiment 1

We used a python script and the tool Scapy to create and send probe packets from host 1 to host 3. In the same time
on host 3 we run a python script using Scapy to sniff the incoming packets at the ethernet port 0. Then we used the
tool Iperf3 to create TCP traffic with MTU size 9000 at random ports in range 1024 to 65000. In the beginning, the
queue depth observed was 0 because we generated only ICMP (mouse) traffic, but when we run the python script and
generated traffic flow with Iperf3, from h1 and h2 to h3 and h4 respectively, then the two flows started to collide
because we have only one single path in the selected topology. The queue was filling up to 63 (the default queue size
is 64 packets) and the latency was increasing dramatically. We can observe the correlation between the latency and
the queue depth.

Results
• Experiment 2

we used Iperf3 in order to generate TCP traffic with duration of 100 seconds, MTU size 9000, at random ports in range from 1024

to 65000 and from hosts 1-4 to hosts 5-8 respectively. First, we sent traffic without applying Load Balancing in order to get

throughput and latency measurements and then after applying Load Balancing (threshold to 20 packets), we generated and sent

the same traffic to the network in order to compare between the two cases. By splitting the flows in all paths we increased the

throughput significantly by avoiding congestions, from 3.7 Mbps/sec to ~10 Mbps/sec while in the same time the latency reduced

from 94.2ms to 54.2ms.

Before After

Results
• Experiment 2

Throughput Latency

Conclusion & Future Work

This thesis presented P4, a programming protocol independent packet processors language and proposed an
implementation of In-band Network Telemetry in P4 which identifies congestion in the network by
monitoring the queue occupancy in the data plane and in real time (as possible) according to the network
state.

In-Band Network Telemetry using P4 can provide real time network state directly in the data plane

opening new possibilities of enhanced monitoring and troubleshooting, able to adapt to any

encapsulation format, any state that is required to be collected and any feature, protocol (current or

future).

Further work is still required with the evaluation of Load Balancing in order to fully understand how

different factors may affect the performance of the network.

In the future we will conduct experiments using more complex algorithms for realistic applications using

hardware P4 programmable networking devices and In-band Network Telemetry.

Thank you !

Results (extra)
• Experiment 2

Before
After

