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Problem Statement The Feature Selection (FS) problem

The Feature Selection (FS) problem

Goal: Find the minimally-sized feature subset that is necessary and
sufficient to the target concept, e.g., classification, clustering

Class: NP-hard, combinatorial problem with O(2d) complexity, where d is
the number of features

Gains:

model simplification

shorter computing time

curse of dimensionality avoidance

enhanced generalization by overfit avoidance
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Theoretical Background Feature Selection techniques (1/2)

Feature Selection techniques (1/2)

Traditional FS techniques:

Filter

Wrapper

Embedded

Figure: The pros and cons of traditional FS techniques.
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Theoretical Background Feature Selection techniques (2/2)

Feature Selection techniques (2/2)

Emerging FS techniques:

Ensemble: The final subset is obtained by specifically handling a
multitude of subsets yielded from single FS methods, e.g., union,
weighted, etc.

Hybrid: Comprises of multi-level search phases, performed by the
same or different FS methods
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Methodology Reduced Variable Neighborhood Search (RVNS)

Reduced Variable Neighborhood Search (RVNS)

Benefits from systematic
changes in different
neighborhood structures

Avoids local search →
computationally lighter than
basic VNS

Suitable for large problem
instances

Figure: RVNS pseudocode for a
minimization problem.
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Methodology Solution Representation and Neighborhood Definitions

Solution Representation and Neighborhood Definitions

Solution representation:

Binary, one-dimensional, d-length array → [0,1,1,0,...,1,0]

Neighborhood structures:

Replace a selected feature with an un-selected one

Replace two selected features with an un-selected one

Add an un-selected feature

... in this order.
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Methodology Fitness Function

Fitness Function

A solution’s quality is determined by:

F (s) = α ∗ 3

a1(s) + a2(s) + a3(s)︸ ︷︷ ︸
a(s)

+(1− α) ∗ g(s)

where:

ai (s) → accuracy from classifieri , i ∈ {1, 2, 3}
g(s) → number of selected features, i.e., ones in s

α → weight coefficient

Optimization criterion: Minimization
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Methodology Motivation

Motivation

Support Vector Machine (SVM), k Nearest Neighbors (kNN) and
Random Forest (RF)
Different-learning → more reliable results

Figure: The classifiers are learning in a different manner, e.g., iterations 40 and
145.
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Methodology Towards Hybridization - RFE

Towards Hybridization - RFE

Recursive Feature Elimination (RFE):

Embedded FS technique

Heuristically ranks feature importance

Ranking via a model’s attributes, e.g., SVM’s coefficients

Eliminates a certain % of unimportant features at each iteration

Terminates when the specified % of features is reached

Figure: The SMV-RFE FS scheme.
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Methodology Hybrid RFE-RVNS

Hybrid RFE-RVNS

Figure: The hybrid RFE-RVNS FS scheme.
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Experimental Evaluation Cancer-Related Datasets

Cancer-Related Datasets

Five cancer-related datasets (microarray, mass spectroscopy):

Small sample size

High dimensional

Features → Genes

Figure: Dataset characteristics.

Sources: http://leo.ugr.es/elvira/DBCRepository/, https://data.mendeley.com/datasets/v3cc2p38hb/1
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Experimental Evaluation Parameter settings

Parameter settings

Experimentally selected parameters:

Initial solution: random, 2 arbitrarily selected genes

RVNS: 300 iterations, neighborhoods as defined

Fitness function: α equals to 0.99

SVM1: Linear kernel

kNN1: k equals to 5

RF1: 20 10-depth decision trees

SVM-RFE: 5% of top ranked genes, 10% elimination step

1Evaluates model accuracy with 10-fold cross validation
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Experimental Evaluation Performance (1/2)

Performance (1/2)

Worst performance observed on the Colon dataset:

Figure: Performance on the Colon dataset after 10 independent runs.
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Experimental Evaluation Performance (2/2)

Performance (2/2)

Figure: Performance on the Leukemia dataset after 10 independent runs.

... even better performance on the rest of the datasets.
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Comparison Comparison

Comparison

Adjustments:

only SVM classifier

RFE-RVNS, RVNS → 500 and 1000 iterations, respectively

Figure: The performance of our algorithms, when applied only with the SVM
classifier, compared to similar methods.
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Conclusion and Future Directions Conclusion

Conclusion

Methodology’s perks:

Fast Wrapper FS technique

Successful neighborhood structures

Different-learning classifiers → trustworthy results

High average accuracy

Small gene subset size

Enhanced performance with the hybridization, i.e., RFE-RVNS

Methodology’s drawbacks:

Weaker exploration than population-based metaheuristics
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Conclusion and Future Directions Future Directions

Future Directions

Hybridization of RVNS with other FS techniques

Testing of presented methods on more datasets, e.g., multi-class
cancer-related, text classification

Cancer classification necessitates datasets with larger sample
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Conclusion and Future Directions End of presentation

End of presentation

Questions?
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