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NEURAL ARCHITECTURE SEARCH (NAS)



NAS INTUITION

• Process of automating the construction of good neural architectures

• Search spaces

• Global (or macro)

• Cell (or micro)

• Optimization methods

• Reinforcement Learning

• Metaheuristic Algorithms

• Candidate evaluation methods



NAS 
PROGRESSION



IMPLEMENTATION APPROACH AND TOOLS



TOOLS

• Python programming language

• Keras

• NORD

• PyGMO

G. Kyriakides and K. Margaritis, “NORD: A python framework for Neural Architecture Search,” Softw. Impacts, vol. 6, p. 100042, Nov. 2020, doi: 

10.1016/j.simpa.2020.100042.

F. Biscani and D. Izzo, “A parallel global multiobjective framework for optimization: pagmo,” J. Open Source Softw., vol. 5, no. 53, p. 2338, Sep. 2020, doi: 

10.21105/joss.02338.



CONVENTIONS AND LIMITATIONS

• Using benchmark NASBench-101 and a NASNet-like search space

• Up to 5 hidden layers per network

• Up to 9 connections between the layers

• Using only 1x1 convolution, 3x3 convolution and 3x3 max-pooling layers

• Best accuracy in the benchmark: 95.15%

C. Ying, A. Klein, E. Real, E. Christiansen, K. Murphy, and F. Hutter, “NAS-BENCH-101: Towards reproducible neural architecture search,” 36th Int. Conf. Mach. Learn. ICML 

2019, vol. 2019-June, pp. 12334–12348, 2019.

R. Miikkulainen et al., “Evolving deep neural networks,” Artif. Intell. Age Neural Networks Brain Comput., pp. 293–312, 2018, doi: 10.1016/B978-

0-12-815480-9.00015-3.



DEEP Q-LEARNING



DEEP Q-LEARNING INTUITION

• Q-Learning returns a Q-value for a state-action pair

• Deep Q-Learning tackles the problem of larger search spaces

• For each state input, it returns an approximation for each action’s Q-value

• The agent that estimates the Q-values is a neural network

• Two neural networks are used: A prediction network (always trained) and a target network (updated every C

iterations)

• The loss to train the prediction network is based on the different between the predicted and the target Q 

values

• Mechanisms to improve performance:

• ε-greedy strategy (exploration-exploitation tradeoff)

• Experience Replay Memory (s, a, r, s’)



IMPLEMENTATION SETUP AND COMPARISON

1 2 3

Controller type Dense LSTM LSTM

Episodes 1000 1000 2000

Search space 363 363 182947 (503x greater)

Best accuracy found 93.9% 93.9% 94.72%

Converges at best 

accuracy found
✔ ✔ ❌

Noticeable difference 

between 1-network and 

2-network executions

❌ ❌ ✔



EXPERIMENTAL RESULTS WITH A SMALL SEARCH 
SPACE

DENSE-LAYER CONTROLLER LSTM CONTROLLER



EXPERIMENTAL RESULTS WITH A WIDER SEARCH 
SPACE



EVOLUTIONARY ALGORITHM



PARAMETERS TO DEFINE

• population: empty queue of size P

• history: ∅ of size C

• sample: ∅ of size S

• Mutation related:

• add_node_rate

• add_connection_rate

E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized Evolution for Image Classifier Architecture Search,” Proc. AAAI Conf. Artif. Intell., vol. 33, pp. 4780–4789, 2019, 

doi: 10.1609/aaai.v33i01.33014780. 



THE ALGORITHM (1/2)

• Initialize the population

1. Create a random neural architecture

2. Train and evaluate it

3. Add it to the end of the population

4. Add it to history

5. Repeat steps 1-4 for P (population size) amount of times



THE ALGORITHM (2/2)

• After the population initialization, in every iteration:

1. Get a random sample of size S from the population

2. Get the highest accuracy model from the chosen sample, which is the parent

3. Perform a mutation to the parent to produce a child

• A mutation is either an addition of a layer or the connection of two existing ones

4. Train and evaluate the child

5. Add the child to the end of the population

6. Add the child to history

7. Remove the oldest member of the population (from the beginning of the queue)

8. Repeat steps 1-7 for C-P amount of times

• Return the highest-accuracy model in history



EXPERIMENTAL SETUP

• history size: 1500

• population and sample size combinations (P/S):

• 100/2, 100/50, 20/20, 100/25, 64/16

• add_node_rate

• 0.01, 0.05, 0.10, 0.15, 0.20

• add_connection_rate

• 0.01, 0.05, 0.10, 0.15, 0.20

• Experiments: 10



EXPERIMENTAL RESULTS
Highest Accuracy found in all experiments: 94.43%

Worst performances have been met for the lower add_connection_rate values.



METAHEURISTIC ALGORITHMS USING PYGMO



PYGMO REQUIREMENTS

• An optimization problem is required as input for PyGMO

• Formulating our NAS problem results in:

based on the fact that all layer types and their inputs fit in a vector of 26 

positions.



SELECTED ALGORITHMS

• Extended Ant Colony Optimization (GACO)

• Particle Swarm Optimization (PSO)

• Artificial Bee Colony (ABC)



EXPERIMENTAL SETUP

• Parameter experimentation for each algorithm

• Generations = 50

• Population size = 30

• 10 executions per algorithm (and Random Search)



EXPERIMENTAL RESULTS

Highest Accuracy
Highest Mean (per 

experiment)
Mean

Mean of Highest 

Accuracies (per 

experiment)

Average Generation in 

which the highest was first 

met

GACO 94.121% 94.017% 93.731% 94.088% 31.0

PSO 94.431% 94.179% 94.029% 94.186% 19.5

ABC 94.151% 94.018% 87.706% 93.847% 9.0

Random Search 94.061% 92.591% 90.109% 93.964% 18.7

For every generation, the best candidate of the population is used for the comparison.



EXPERIMENTAL RESULTS (ALL ALGORITHMS)



EXPERIMENTAL RESULTS (GACO)



EXPERIMENTAL RESULTS (PSO)



EXPERIMENTAL RESULTS (ABC)



CONCLUSION



CONCLUSION

• Deep Q-Learning inadequacies for wider search spaces

• Either add “attention” or switch to PPO

• The evolutionary algorithm and PSO outperform GACO, ABC and Random 

Search

• Artificial Bee Colony shows major signs of instability

DQN (small) DQN (wide) Evolutionary GACO PSO ABC

Highest 

Accuracy
93.9% 94.72% 94.43% 94.12% 94.43% 94.15%



ADDITIONAL WORK

• Fashion-MNIST (highest accuracy: 96.91%)

• Experiments with PyGMO (PSO)

• Global search space (added functionality to use greater number of hidden layers)

• 5, 7 or 9 hidden layers

• Layer types (conv3x3, maxpool2x2)

• Output dimension of the convolutional layers

• Used NAS to find good architectures (only 10-20 epochs of training)

• Trained the best architectures found for more epochs (e.g. 50, 108)

• Highest accuracy ≈ 92%

• Improvement ideas:

• More options for the number of hidden layers and layer types

• Environment to generate more models (current results are based on max. 200 models instead of 1500)



THANK YOU FOR YOUR ATTENTION!

• Any questions?


